
 

 
Uniaxial Crushing of Sandwich Plates Under Air Blast: 

Influence of Mass Distribution 
 

by Joseph A. Main and George A. Gazonas 
 
 

ARL-RP-210 June 2008 
 
 
 
 
 
 
 
 
 
 
 
 
 

A reprint from the International Journal of Solids and Structures, vol. 45, pp. 2297–2321, 2008. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited. 



NOTICES 
 

Disclaimers 
 
The findings in this report are not to be construed as an official Department of the Army position unless 
so designated by other authorized documents. 
 
Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the 
use thereof. 
 
Destroy this report when it is no longer needed.  Do not return it to the originator. 



 

 

Army Research Laboratory 
Aberdeen Proving Ground, MD  21005-5069 
 

ARL-RP-210 June 2008 
 
 
 
 

Uniaxial Crushing of Sandwich Plates Under Air Blast: 
Influence of Mass Distribution 

 
Joseph A. Main 

National Institute of Standards and Technology 
 

George A. Gazonas 
Weapons and Materials Research Directorate, ARL 

 
 
 
 
 
 
 
 
 
 

A reprint from the International Journal of Solids and Structures, vol. 45, pp. 2297–2321, 2008. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited.



 

 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering 
and maintaining the data needed, and completing and reviewing the collection information.  Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to 
comply with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

June 2008 
2. REPORT TYPE 

Reprint 
3. DATES COVERED (From - To) 

April 2005 – October 2007 
5a. CONTRACT NUMBER 

 
5b. GRANT NUMBER 

4. TITLE AND SUBTITLE 

Uniaxial Crushing of Sandwich Plates Under Air Blast:  Influence of Mass 
Distribution 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

62105AH84 
5e. TASK NUMBER 

 

6. AUTHOR(S) 

Joseph A. Main and George A. Gazonas 

5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 
ATTN:  AMSRD-ARL-WM-MD 
Aberdeen Proving Ground, MD  21005-5069 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 

ARL-RP-210 

10. SPONSOR/MONITOR'S ACRONYM(S) 

 
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 
11. SPONSOR/MONITOR'S REPORT 
      NUMBER(S) 

 
12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 

A reprint from the International Journal of Solids and Structures, vol. 45, pp. 2297–2321, 2008. 
14. ABSTRACT 

Motivated by recent efforts to mitigate blast loading using energy-absorbing materials, this report uses analytical and 
computational modeling to investigate the influence of mass distribution on the uniaxial crushing of cellular sandwich plates 
under air blast loading. In the analytical model, the cellular core is represented using a rigid, perfectly-plastic, locking 
idealization, as in previous studies, and the front and back faces are modeled as rigid, with pressure loading applied to the front 
face and the back-face unrestrained. This model is also applicable to the crushing of cellular media in ‘‘blast pendulum’’ 
experiments. Fluid–structure interaction effects are treated using a recent result that accounts for nonlinear compressibility 
effects for intense air blasts. Predictions of the analytical model show excellent agreement with explicit finite element 
computations, and the model is used to investigate the response of the system for all possible distributions of mass between the 
front and back faces and the cellular core. Increasing the mass fraction in the front face is found to increase the impulse required 
for complete crushing of the cellular core but also to produce undesirable increases in back-face accelerations. Optimal mass 
distributions for mitigating shock transmission through the sandwich plate are investigated by maximizing the impulse capacity 
while limiting the back-face accelerations to a specified level. 
 
15. SUBJECT TERMS 

air blast, metallic foams, optimization, finite elements, sandwich plates, LS-DYNA, fluid-structure interaction 

16. SECURITY CLASSIFICATION OF:   
19a. NAME OF RESPONSIBLE PERSON 
George Gazonas 

a. REPORT 
UNCLASSIFIED 

b. ABSTRACT 
UNCLASSIFIED 

c. THIS PAGE 
UNCLASSIFIED 

17. LIMITATION 
OF ABSTRACT 

 
UL 

18. NUMBER 
OF PAGES 

 
36 19b. TELEPHONE NUMBER (Include area code) 

410-306-0863 
 Standard Form 298 (Rev. 8/98) 
 Prescribed by ANSI Std. Z39.18



Available online at www.sciencedirect.com
International Journal of Solids and Structures 45 (2008) 2297–2321

www.elsevier.com/locate/ijsolstr
Uniaxial crushing of sandwich plates under air blast: Influence
of mass distribution q

Joseph A. Main a,*, George A. Gazonas b

a National Institute of Standards and Technology, Building and Fire Research Laboratory, 100 Bureau Drive, Stop 8611,

Gaithersburg, MD 20899-8611, USA
b US Army Research Laboratory, Weapons and Materials Research Directorate ATTN: AMSRD-ARL-WM-MD,

Aberdeen Proving Ground, MD 21005-5069, USA

Received 13 October 2006; received in revised form 11 October 2007
Available online 8 December 2007
Abstract

Motivated by recent efforts to mitigate blast loading using energy-absorbing materials, this paper uses analytical and
computational modeling to investigate the influence of mass distribution on the uniaxial crushing of cellular sandwich
plates under air blast loading. In the analytical model, the cellular core is represented using a rigid, perfectly-plastic, lock-
ing idealization, as in previous studies, and the front and back faces are modeled as rigid, with pressure loading applied to
the front face and the back-face unrestrained. This model is also applicable to the crushing of cellular media in ‘‘blast pen-
dulum’’ experiments. Fluid–structure interaction effects are treated using a recent result that accounts for nonlinear com-
pressibility effects for intense air blasts. Predictions of the analytical model show excellent agreement with explicit finite
element computations, and the model is used to investigate the response of the system for all possible distributions of mass
between the front and back faces and the cellular core. Increasing the mass fraction in the front face is found to increase the
impulse required for complete crushing of the cellular core but also to produce undesirable increases in back-face accel-
erations. Optimal mass distributions for mitigating shock transmission through the sandwich plate are investigated by
maximizing the impulse capacity while limiting the back-face accelerations to a specified level.
Published by Elsevier Ltd.

Keywords: Sandwich plates; Metallic foams; Fluid–structure interaction; Finite elements; Optimization; Air blast
1. Introduction

Sandwich plates with cellular metal cores are being widely considered for blast-mitigation applications, due
largely to the energy absorption capacity of the cellular core material. Computational simulations have shown
0020-7683/$ - see front matter Published by Elsevier Ltd.
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that under blast loading, sandwich plates exhibit reduced deflections relative to solid plates with the same total
mass (Xue and Hutchinson, 2003, 2004; Fleck and Deshpande, 2004; Qiu et al., 2004; Hutchinson and Xue,
2005; Vaziri and Hutchinson, 2006). These studies considered identical face sheets, and while the influence of
varying the mass ratio between the face sheets and the core has been studied, the influence of varying the mass
ratio between the two face sheets has not. The influence of varying the thickness of the face sheet nearest the
blast, in particular, is not obvious, because two competing effects are at work. On the one hand, reducing the
thickness of this front face means that the blast impulse is imparted to a smaller mass, resulting in increased
kinetic energy, which must be dissipated through crushing of the core. This effect was noted by Xue and
Hutchinson (2004) in a computational study of blast loading on sandwich plates, in which the kinetic energy
imparted to a sandwich plate was observed to be greater than for a monolithic solid plate of the same total
mass. On the other hand, reducing the front face thickness enhances the beneficial effects of fluid–structure
interaction (FSI), which leads to reductions in the impulse imparted to the system. A recent study that
accounted for nonlinear compressibility effects in air blast loading on freestanding solid plates found that such
impulse reductions due to FSI could be fairly significant (Kambouchev et al., 2006), more significant than pre-
dicted by the linear acoustic FSI analysis of Taylor (1963), which has been used in previous analyses of blast
loading on sandwich plates. Depending which of these effects is dominant, benefits might be achieved by either
increasing or decreasing the mass fraction in the face sheet nearest the blast.

Motivated by these observations, this paper uses analytical and computational modeling to investigate the
influence of mass distribution on the uniaxial crushing of sandwich plates under air blast, considering all pos-
sible distributions of mass between the two face sheets and the cellular core. While previous studies of blast
loading on sandwich plates have primarily focused on minimizing dynamic deflections, the main interest in the
present study is in mitigating shock transmission through the thickness of the sandwich plate. A potential
application is for shock isolation of electronic components mounted to the back face of an armor panel. Accel-
erations of the back face are of particular concern in such applications, because damage to an electronic com-
ponent is related to the acceleration transmitted to its base.

Because stress–strain curves for cellular media exhibit a characteristic plateau, it has been noted (Hanssen
et al., 2002) that a cellular layer could potentially serve a protective function against blast loading by limiting
the stresses transmitted through the layer to the plateau stress rP. However, this protective function is lost if
complete densification of the cellular layer is permitted, in which case the transmitted stresses can actually be
amplified. Such amplification can occur because the crushing mechanism of cellular media under blast or high-
speed impact involves propagation of a densification front with the characteristics of a shock wave. While the
stress ahead of the densification front is limited to the plateau stress, a velocity-dependent jump in stress across
the densification front can result much higher stress in the crushed material behind the densification front.
This stress enhancement due to shock formation has been exploited in the use of metal foam projectiles to
simulate shock loading on structures (Rathbun et al., 2006; Radford et al., 2006). Under blast loading, stresses
several times larger than the peak applied blast pressure can be transmitted through a cellular layer if the
thickness of the layer is insufficient to arrest the densification front, as observed by Li and Meng (2002).

This mechanism of stress enhancement due to shock formation helps to account for the surprising obser-
vation that the use of cellular materials under blast loading has in many instances led to enhancement, rather
than mitigation, of blast effects. Cooper et al. (1991) reported enhanced thoracic injury in animals whose chest
cavities were ‘‘protected’’ by a foam layer, and computational studies conducted by Friend (2005) revealed
that thoracic injury is exacerbated by shock wave compression of alternating soft foam layers and subsequent
acceleration of more rigid layers in porous foam body armor. Experiments by Hanssen et al. (2002) showed
that increased upswing resulted from the addition of an aluminum foam layer to the face of a massive ‘‘pen-
dulum’’ subjected to blast loading, and other examples of enhanced blast effects are described by Li and Meng
(2002). In discussing the blast pendulum experiments of Hanssen et al. (2002), Nesterenko (2002) credited the
observed impulse enhancement to the first of the two competing effects mentioned above, noting that the blast
impulse would have been imparted primarily to a lightweight plate covering the foam layer, leading to signif-
icantly higher kinetic energy than if the same impulse were imparted directly to the more massive pendulum.
Nesterenko (2002) suggested that complete crushing could then lead to detachment and rebounding of the
densified foam layer, thus increasing the resultant momentum of the pendulum. It is noted that the blast pen-
dulum can be considered an extreme example of a ‘‘sandwich plate’’ with unequal face sheets, with most of the
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mass in the back face (i.e., the pendulum) and relatively small masses in the front face and the cellular core.
The present study can thus afford insights into the influence of mass distribution on the poor performance of
this system under blast loading.

To investigate the influence of mass distribution on the uniaxial crushing of sandwich plates under air blast
loading, an analytical model is developed in this paper in which the front and back faces are treated as rigid,
with a pressure pulse applied to the front face and the back-face unrestrained, and the cellular core is repre-
sented using the well-established rigid, perfectly-plastic, locking (R-P-P-L) continuum idealization. The R-P-
P-L idealization was originally developed to model the dynamic crushing of wood (Reid and Peng, 1997) and
has subsequently been applied to metal honeycombs and foams in a number of studies (Harrigan et al., 1999;
Hanssen et al., 2002; Tan et al., 2005b). The R-P-P-L idealization can be applied to a variety of cellular topol-
ogies, provided that the cell dimensions are sufficiently small relative to the domain of interest to justify the
continuum approximation. Based on impact experiments for aluminum foams, Tan et al. (2005a) observed
that the domain of interest should include at least five average cell diameters for a valid continuum approx-
imation. For cases in which the cell sizes are large and the individual core elements are relatively stocky, rep-
resenting the core crushing as a planar densification front propagating through a continuum may be
inappropriate, and the core crushing may be better represented using the model developed by Vaughn
et al. (2005), which considers coupled plastic wave propagation and nonlinear buckling of individual columns.
Xue and Hutchinson (2006) showed that the model of Vaughn et al. (2005) predicted quite accurately the
dynamic crushing strength of square honeycomb sandwich cores under different crushing rates. While the
R-P-P-L idealization does not explicitly incorporate rate dependence in the plateau stress, rate-dependent
behavior results from the shock wave formation and the associated velocity-dependent stress jump mentioned
previously. Tan et al. (2005a, Fig. 18), showed that a one-dimensional shock model using the R-P-P-L ideal-
ization was able to accurately predict experimental observations of increasing crushing stress with increasing
impact velocity for aluminum foam projectiles.

As illustrated in Fig. 1, a number of previous studies have developed analytical models to represent the one-
dimensional crushing of cellular media under various dynamic loading conditions. Reid and Peng (1997) used
the R-P-P-L idealization to model the dynamic crushing of wood cylinders impacting a rigid wall, obtaining an
expression for the enhancement of stress transmitted to the rigid wall as a consequence of the stress jump
across the shock front. This model was subsequently applied to aluminum honeycomb projectiles by Harrigan
et al. (1999). Hanssen et al. (2002) investigated the crushing of a metal foam bar with a triangular pressure
pulse applied to a rigid cover sheet, comparing finite element results with an analytical solution using the
R-P-P-L idealization. They obtained an expression for the minimum thickness required to fully absorb a given
impulse, thereby limiting the stress transmitted to the rigid support to the plateau stress rP. Li and Meng
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Fig. 1. One-dimensional systems considered in previous studies.
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(2002) used a nonlinear spring-mass model to examine the shock wave propagation through a cellular medium
subject to a rectangular pressure pulse, and as noted previously, they observed a sharp increase in the stress
transmitted to the rigid support for impulses exceeding the energy absorption capacity of the cellular layer.
The R-P-P-L idealization was extended by Lopatnikov et al., 2003, 2004, who used an elastic, perfectly-plastic,
rigid (E-P-P-R) idealization to model the dynamic deformation of metal foam materials under both Taylor
impact and plate impact boundary conditions. Li and Reid (2006) subsequently proposed corrections to
the unloading assumption used in the E-P-P-R model and the impact velocity regimes defined by Lopatnikov
et al. (2003) for the plate impact problem.

In analyzing the dynamic response of sandwich beams and plates to blast loading, Fleck and Deshpande
(2004) and Hutchinson and Xue (2005) divided their analyses into three temporal stages, of which stage I
involved FSI in the reflection of the incident pressure pulse from the front face of the sandwich panel, and
stage II involved one-dimensional compaction of the cellular core with initial velocities resulting from the
stage I analysis. Both studies treated FSI in stage I by applying the linear acoustic analysis of Taylor
(1963) to the front face, while Hutchinson and Xue (2005) extended this analysis to incorporate the resistance
provided by a perfectly-plastic core. Both studies analyzed the core crushing in stage II by employing a quasi-
static assumption for the energy dissipation in the core, with Fleck and Deshpande (2004) employing the R-P-
P-L idealization and Hutchinson and Xue employing a perfectly-plastic idealization with no compaction limit.
In a subsequent analysis of shock wave propagation in cellular media, however, Radford et al. (2005) noted
that the energy dissipation in the core could be significantly larger than the quasi-static value because of addi-
tional dissipation within the shock wave. This additional dissipation is associated with a drop in kinetic energy
across the shock front, which follows from the balance of momentum, not from an explicit assumption of
material rate dependence. Assuming a linear rate dependence for the cellular material, Radford et al.
(2005) presented an asymptotic analysis of the shock structure, which enabled a quantification of the viscous
dissipation that balances the drop in kinetic energy. Tan et al. (2005b) also noted the incorrectness of a global
energy balance that assumes quasi-static energy dissipation in the core, using a thermo-mechanical approach
to derive the governing equations for shock propagation in an R-P-P-L solid and showing that quasi-static
assumption leads to a contradiction. The velocity-dependent energy dissipation associated with the shock
front was properly accounted for in a more recent model developed by Deshpande and Fleck (2005) for
one-dimensional crushing of sandwich plates. This model also relaxed the requirement of a strict temporal sep-
aration between FSI in stage I and core crushing in stage II by considering time-varying loading on the front
face rather than simply applying the resulting impulse to the front face as an initial velocity.

In terms of the representation of shock wave propagation and associated energy dissipation in the cellular
core, the present model is equivalent to that of Deshpande and Fleck (2005), although it was developed inde-
pendently and was previously reported briefly in Main and Gazonas (2005). Key differences are that Deshpan-
de and Fleck (2005) considered face sheets of equal mass, while the present model allows for arbitrary masses
of the front and back faces, and that Deshpande and Fleck (2005) used the linear acoustic analysis of Taylor
(1963) to represent FSI effects for underwater shock loading, while the present model incorporates the recent
analysis of Kambouchev et al. (2006) to account for nonlinear compressibility and FSI effects in air-blast load-
ing. Vaziri and Hutchinson (2006) presented two approaches for implementing the result of Kambouchev et al.
(2006) in computational simulations of sandwich plates under air-blast loading, one in which the reflected
impulse is imparted to the front face through an initial velocity and another in which a time-dependent pres-
sure history is applied to the front face. The present study uses a modification of the latter approach that
accounts for the initial resistance provided by the plateau stress of the cellular core.

The outline of this paper is as follows. The derivation of the analytical model is first presented in Section 2,
and in Section 3 predictions of the analytical model are compared with finite element results. Initiation and
arrest of densification are considered in Section 4, in which the analytical model is used to investigate the influ-
ence of mass distribution on the critical reflected impulse required for complete densification of the cellular
core under different levels of peak reflected pressure. The influence of mass distribution on the time required
for complete densification and the corresponding energy dissipation in the core are also investigated. FSI
effects are considered in Section 5, in which the influence of mass distribution on the critical incident impulse
is investigated and the work done by the air blast on the sandwich plate is compared with the work done on a
corresponding solid plate with the same total mass. Finally, accelerations of the back face are investigated in
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Section 6, and optimal mass distributions for mitigation of shock transmission are investigated by seeking to
maximize the impulse that can be absorbed while limiting the back-face accelerations to a specified level.

2. Analytical model

A strip through the thickness of a sandwich plate is considered, as depicted with a partially compacted core
in Fig. 2a. The R-P-P-L idealization, depicted in Fig. 2b, is used to represent the stress–strain relationship of
the core material. The applied pressure pulse pr(t) is the pressure reflected from the front face of the sandwich
panel and is influenced by the nonlinear compressibility of air and by fluid–structure interaction (FSI).
Because of FSI effects, pr actually depends on the motion of the front face and cannot be formally defined
as a function solely of time t. However, Section 5 presents an approximate approach, based on the analysis
of Kambouchev et al. (2006), whereby nonlinear compressibility and FSI effects are accounted for in defining
a reflected pressure pulse pr(t) that results from a specified incident pressure pulse pi(t). While no particular
functional form is assumed for pr(t) in the derivation of the analytical model, it is assumed that the peak
reflected pressure pR occurs initially, so that pr(0) = pR and pr(t) 6 pR for t > 0.

2.1. Equation of motion

A strip of sandwich plate with unit cross-sectional area is considered (i.e., with unit area exposed to the
blast pressure), with total mass given by m = m1 + q0‘0 + m2, where q0 and ‘0 are the uncompressed density
and initial thickness of the cellular core, and m1 and m2 are the areal densities of the front and back faces,
respectively. The acceleration of the center of mass, denoted €uG, follows directly from application of Newton’s
second law to the entire system, whereby all internal forces cancel and the time derivative of the net momen-
tum is equivalent to the net external force (because a strip of unit cross-sectional area is considered, forces and
pressures can be used interchangeably):
Fig. 2.
for cel
prðtÞ ¼ m€uG ð1Þ

The total momentum of the system can be obtained by integrating Eq. (1) with respect to time, assuming that
the panel is initially at rest, _uGð0Þ ¼ 0, to give the impulse–momentum relationship
irðtÞ ¼ m _uG ð2Þ

where ir(t) denotes the reflected impulse per unit area:
irðtÞ ¼
Z t

0

prð̂tÞd̂t ð3Þ
Provided that the applied pressure is sufficiently high, densification of the cellular core commences at the
front face, and a shock front propagates through the core. (The pressure required to initiate densification
is investigated subsequently.) According to the simplified model of Fig. 2b, the densified core material moves
as a rigid body with the same velocity as the front face, while the uncompressed core material moves as a rigid
body with the velocity of the back face. Since the motion of the center of mass is known from Eqs. (1) and (2),
it is convenient to express the positions of the front and back faces of the panel with reference to the position
of the mass center, as follows:
u1

ε
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Analytical model definition: (a) strip of sandwich panel with partially compacted core and (b) engineering stress–strain relationship
lular core material (R-P-P-L idealization).
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u1 ¼ uG � ð‘� xGÞ; u2 ¼ uG þ xG ð4a; bÞ

where u1 and u2 denote the positions of the front and back faces, respectively, ‘ denotes the total thickness of
the core, and xG denotes the distance from the center of mass to the back face, as shown in Fig. 2a. With eD

denoting the volumetric strain at complete densification, it follows from conservation of mass that the density
of the compressed core material is q0/(1 � eD) and the total thickness of the core is given by
‘ ¼ ‘0 � eDð‘0 � xÞ ð5Þ

where x denotes the thickness of the uncompressed core material, and the thickness of the shock front itself is
assumed to be negligible. By forming and differentiating an expression for xG the following relation can be
obtained:
_xG ¼ ðeD=mÞ½m1 þ q0ð‘0 � xÞ� _x ð6Þ

The following expressions for the velocities of the front and back faces can then be obtained by differentiating
Eqs. (4a,b) and (5) and combining with Eq. (6):
_u1 ¼ ½irðtÞ � eDðq0xþ m2Þ _x�=m; _u2 ¼ firðtÞ þ eD½m1 þ q0ð‘0 � xÞ� _xg=m ð7a; bÞ

in which the substitution _uG ¼ irðtÞ=m from Eq. (2) has been made.

The stress just ahead of the shock front is rP, and application of Newton’s second law to the material ahead
of the shock front yields the following equation:
rP ¼ ðq0xþ m2Þ€u2 ð8Þ
Differentiating Eq. (7b) and substituting into Eq. (8) then yields the following nonlinear ordinary differential
equation for x:
�eD½m1 þ q0ð‘0 � xÞ�€xþ eDq0 _x2 ¼ prðtÞ � rPm=ðq0xþ m2Þ ð9Þ
Eq. (9) can be integrated numerically with initial conditions x(0) = ‘0 and _xð0Þ ¼ 0.
2.2. Energy balance

The balance of mechanical energy for the system of Fig. 2 requires that the work done by the pressure pulse,
denoted Wp, must equal the sum of the kinetic energy of the system, denoted Ek, and the energy dissipated in
the core material, denoted Ed:
W p ¼ Ek þ Ed ð10Þ

The work per unit area done by the pressure pulse can be expressed as follows, in terms of the applied pres-

sure pr(t) and the velocity of the front face _u1:
W p ¼
Z t

0

prð̂tÞ _u1 d̂t ð11Þ
The expression for _u1 from Eq. (7b) can then be substituted into Eq. (11). The resulting integral contains the
term irð̂tÞprð̂tÞ, which integrates directly to 1

2
i2
r ðtÞ, yielding the following expression:
W p ¼
1

2
i2
r ðtÞ=m� ðeD=mÞ

Z t

0

prð̂tÞðq0xþ m2Þ _x d̂t ð12Þ
The first term in Eq. (12) represents the work done by the pressure pulse if no densification occurs ð _x ¼ 0Þ, in
which case the front face moves at the same velocity as the center of mass, _u1 ¼ _uG. The second term in Eq.
(12) represents the enhancement of this work resulting from densification of the cellular core. This term is po-
sitive because _x < 0 as the shock front propagates. Densification of the core results in larger velocities of the
front face ð _u1 > _uGÞ, so that the applied pressure acts through a larger distance, resulting in increased work.
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With the thickness of the shock front assumed negligible, the kinetic energy of the sandwich panel per unit
area can be expressed as follows, as the sum of contributions from the portions on each side of the shock front:
Ek ¼
1

2
½m1 þ q0ð‘0 � xÞ� _u2

1 þ
1

2
ðq0xþ m2Þ _u2

2 ð13Þ
Substituting the expressions for _u1 and _u2 from Eqs. (7a,b) and collecting terms yields the following expression
for the kinetic energy:
Ek ¼
1

2
i2
r ðtÞ=mþ 1

2
ðe2

0=mÞ½m1 þ q0ð‘0 � xÞ�ðq0xþ m2Þ _x2 ð14Þ
The first term in Eq. (14) represents the kinetic energy associated with motion of the mass center and is equiv-
alent to the first term in Eq. (12). The second term in Eq. (14) is zero if no densification occurs ð _x ¼ 0Þ, and it
represents an enhancement of the kinetic energy resulting from relative motion of the front and back faces.

Because the uncompressed material ahead of the shock front and the densified material behind the shock
front are both assumed to act rigidly, it is only within the shock front that energy dissipation occurs. An
expression for the energy dissipated in the core can then be obtained by considering a control volume that
encloses the shock front. With the thickness of the shock front assumed negligible, no mass or kinetic energy
can accumulate within the control volume. Therefore, the flux of kinetic energy into the control volume must
be balanced by the rate of external work on the control volume and the rate of energy dissipation within the
control volume. The rate of energy dissipation within the control volume can then be expressed as follows:
_Ed ¼
1

2
q0ð _u1 � _u2Þð _u2

2 � _u2
1Þ=eD � rP _u2 þ ðrP þ DrÞ _u1 ð15Þ
The first term on the right-hand side gives the flux of kinetic energy into the control volume, where
q0ð _u1 � _u2Þ=eD gives the flux of mass through the control volume, 1

2
_u2

2 represents the kinetic energy per unit
mass entering the control volume, and 1

2
_u2

1 represents the kinetic energy per unit mass leaving the control vol-
ume. The remaining terms give the net rate of external work on the system within the control volume. The
quantity Dr represents the jump in stress across the shock front, and it follows from conservation of momen-
tum that Dr is given by
Dr ¼ q0ð _u2 � _u1Þ2=eD ð16Þ
Substituting Eq. (16) into Eq. (15) and collecting terms yields the following expression:
_Ed ¼ �rPð _u2 � _u1Þ �
1

2
q0ð _u2 � _u1Þ3=eD ð17Þ
Noting that u2 � u1 = ‘, it follows from differentiation of Eq. (5) that _u2 � _u1 ¼ eD _x, whereby Eq. (17) can be
expressed in terms of _x as
_Ed ¼ �rPeD _x� 1

2
q0e

2
D _x3 ð18Þ
With the conditions Ed = 0 and x = ‘0 at t = 0, Eq. (18) can then be integrated to give
Ed ¼ rPeDð‘0 � xÞ � 1

2
q0e

2
D

Z t

0

_x3 dt ð19Þ
The first term in Eq. (19) represents the quasi-static energy dissipation associated with densification of the core
under a constant stress rP, while the second term represents a rate-dependent enhancement of energy dissipa-
tion associated with the shock front.

It is noted that the equation of motion (9) can be derived in an alternative manner by using the work and
energy expressions presented in this section. Differentiation of Eq. (10) with respect to time yields the follow-
ing relationship:
_W p ¼ _Ek þ _Ed ð20Þ
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It can then be readily verified that differentiation of Eqs. (12), (14), and (19) and substitution into Eq. (20)
yields the same differential equation as Eq. (9). The equation of motion (9) is therefore fully consistent with
the mechanical energy balance presented in this section.

2.3. Nondimensionalization

For the sake of generality, it is useful to express the equation of motion (9) in terms of nondimensional
quantities. A nondimensional coordinate n is introduced to denote the position of the shock front:
n ¼ x=‘0 ð21Þ

It is noted that n represents the remaining mass fraction of uncompressed core material and that n = 1 ini-
tially. The symbol iR is introduced to denote the total reflected impulse per unit area:
iR ¼
Z 1

0

prðtÞdt ð22Þ
so that ir(t)! iR as t!1. A nondimensional time s can be defined as follows:
s ¼ trP=iR ð23Þ

The derivatives of the shock front position x can then be expressed in terms of nondimensional variables as
_x ¼ ð‘0rP=iRÞdn=ds and €x ¼ ð‘0r2

P=i2
RÞd

2n=ds2. A nondimensional reflected pressure Pr(s) can also be defined
as a function of nondimensional time through division of pr(t) by the plateau stress rP and a change of vari-
ables using Eq. (23):
P rðsÞ ¼
prðtÞ
rP

����
t¼siR=rP

ð24Þ
For convenience in numerical solution, the additional state variable t = dn/ds is introduced, which represents
the nondimensional relative velocity of the shock front, whereby the equation of motion can be recast as a
first-order differential equation in vector form as follows:
d

ds

n

t

� �
¼

t
�I2

R
½P rðsÞ�ðg0nþg2Þ�1�þg2

0
t2

g0g1þg2
0
ð1�nÞ

( )
ð25Þ
where IR is a nondimensional total impulse, defined as
IR ¼
iR

m

ffiffiffiffiffiffiffiffiffiffi
q0

rPeD

r
ð26Þ
and g0, g1, and g2 represent the fractions of the total mass in the core, the front face, and the back face,
respectively:
g0 ¼ q0‘0=m; g1 ¼ m1=m; g2 ¼ m2=m ð27Þ

For a given form of the pressure input Pr(s), Eq. (25) can be integrated numerically with the initial conditions
n(0) = 1 and t(0) = 0, corresponding to initially uncrushed foam.

Once time histories of n and t have been obtained by numerical integration, it is necessary to express the
response quantities of interest in terms of these nondimensional state variables and the nondimensional pres-
sure Pr(s). Nondimensional front-face and back-face velocities can be defined as follows:
~v1 ¼
_u1

iR=m
; ~v2 ¼

_u2

iR=m
ð28a; bÞ
where iR/m is the limiting velocity of the center of mass as t!1, which follows from Eqs. (2) and (22). By
substituting Eqs. (7a,b) into Eqs. (28a,b) the following expressions can be obtained:
~v1 ¼ I rðsÞ �
g2

0nþ g0g2

I2
R

t; ~v2 ¼ I rðsÞ þ
g2

0ð1� nÞ þ g0g1

I2
R

t ð29a; bÞ
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where Ir(s) is a nondimensional impulse defined as follows, so that Ir(s)! 1 as t!1:
I rðsÞ ¼
Z s

0

P rðŝÞdŝ ¼ irðtÞ
iR

����
t¼siR=rP

ð30Þ
The acceleration of the back-face €u2 is of interest in evaluating the protective function of the cellular core,
and it follows from Eq. (8) that this is given by €u2 ¼ r0=ðq0xþ m2Þ. A nondimensional back-face acceleration
can then be defined as follows:
~a2 ¼
€u2

rP=m
¼ 1

g0nþ g2

ð31Þ
Nondimensional versions of the work and energy quantities from Section 2.2 can be defined through divi-
sion by i2

R=ð2mÞ, which represents the kinetic energy associated with the center of mass in the limit as t!1:
eW p ¼
W p

1
2
i2
R=m

; eEk ¼
Ek

1
2
i2
R=m

; eEd ¼
Ed

1
2
i2
R=m

ð32a; b; cÞ
Substituting Eq. (14) into Eq. (32b), the nondimensional kinetic energy can be expressed as follows:
eEk ¼ I2
r ðsÞ þ ðg2

0=I4
RÞ½g1 þ g0ð1� nÞ�ðg2 þ g0nÞt2 ð33Þ
Because the expressions for Wp and Ed in Eqs. (12) and (19) contain integrals with respect to time, it is con-
venient to express the nondimensional quantities eW p and eEd in terms of their derivatives with respect to non-
dimensional time s, as follows:
d eW p

ds
¼ 2P rðsÞ½I rðsÞ � ðg0=I2

RÞðg0nþ g2Þt� ð34Þ

deEd

ds
¼ �ð2g0=I2

RÞt� ðg3
0=I4

RÞt3 ð35Þ
In numerical solution for eW p and eEd, the state vector in Eq. (25) can then be augmented to include eW p and eEd,
whereby Eqs. (25), (34), and (35) can be integrated simultaneously. The following expression for the nondi-
mensional quasi-static energy dissipation, corresponding to the first term in Eq. (19), can be obtained by inte-
grating the first term in Eq. (35):
eEq-s

d ¼ ð2g0=I2
RÞð1� nÞ ð36Þ
A nondimensional peak reflected pressure PR can be defined as
P R ¼ pR=rP ð37Þ

where pR = pr(0) is the peak reflected pressure, assumed to occur initially. While the derivations thus far have
not assumed any particular functional form for the reflected pressure pulse pr(t), the computational simula-
tions presented in Section 3 consider a triangular pressure pulse decreasing linearly from the peak pressure
pR at t = 0 to zero at t = tR. Using Eqs. (24) and (30), the nondimensional pressure and impulse for the tri-
angular pulse can be expressed as follows:
P rðsÞ ¼
P Rð1� s=sRÞ; 0 6 s 6 sR

0; s > sR

�
; I rðsÞ ¼

ðs=sRÞð2� s=sRÞ; 0 6 s < sR

1; s P sR

�
ð38a; bÞ
where the nondimensional impulse duration is given by sR = tRrP/iR, according to Eq. (23), and because
iR = pRtR/2 for the triangular pulse, it follows that sR = 2/PR.

The approximate treatment of FSI in Section 5 considers an exponential reflected pressure pulse of the form
prðtÞ ¼ pR e�t=tR , where tR is the decay period. Using Eqs. (24) and (30), the nondimensional pressure and
impulse for the exponential pulse can be expressed as follows:
P rðsÞ ¼ P R e�s=sR ; I rðsÞ ¼ 1� e�s=sR ð39a; bÞ

where sR = 1/PR according to Eq. (23) with iR = pRtR for the exponential pulse.
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The limiting case of a zero duration impulse can be considered by setting pr(t) = iRd(t) and ir(t) = iRH(t),
where d(t) is the Dirac delta function and H(t) is the Heaviside step function. The nondimensional pressure
and impulse in this limit are simply given by Pr(s) = d(s) and Ir(s) = H(s), respectively. By integrating the
equation of motion (25) about s = 0, it can be shown that the Dirac delta pressure pulse imparts a nondi-
mensional relative velocity of t0 ¼ �I2

R=ðg1g0Þ to the shock front. The equation of motion (25) in this lim-
iting case can then be solved by imposing the initial condition t(0) = t0 and setting Pr(s) = 0.

3. Comparison with computational predictions

In this section, the predictions of the analytical model are compared with explicit finite element com-
putations using LS-DYNA. The computational simulations follow fairly closely those presented by Hans-
sen et al. (2002), although the present study considers an unrestrained back face with different values of
the front-face and back-face masses, while Hanssen et al. considered a fixed back face. In the computa-
tions, the cellular core was represented by a single row of solid elements with total thickness ‘0 = 5 cm,
using material model 26 (*MAT_HONEYCOMB) with q0 = 250 kg/m3, rP = 1 MPa, and e0 = 0.7. A large
elastic modulus of E = 700 GPa was used to represent the ‘‘rigid’’ portions of the idealized stress–strain
relationship in Fig. 2b, and Poisson’s ratio was set to zero. The solid elements were defined with an initial
aspect ratio of 2:1 (axial to transverse), resulting in an aspect ratio of 0.6:1 at complete densification. The
front and back faces were represented in the computations by added nodal masses, and two different mass
distributions were considered, as indicated in Table 1. The ‘‘blast pendulum’’ case corresponds to the blast
pendulum experiments of Hanssen et al. (2002), with the large back-face mass representing the pendulum.
The ‘‘sandwich plate’’ case, with equal front-face and back-face masses, corresponds to a sandwich plate
as considered by Xue and Hutchinson (2003, 2004) and Fleck and Deshpande (2004).

FSI effects were not explicitly considered in the computational simulations, because the purpose of
the simulations was for comparison with the crushing response predicted by the analytical model under
specified reflected pressure loading. A triangular reflected pressure pulse with the form of Eq. (38a) was
applied to the front face of the first solid element in the computational simulations. As shown in Table 1, a
nondimensional peak reflected pressure of PR = 10 was used in both the ‘‘blast pendulum’’ and ‘‘sandwich
plate’’ cases, while the nondimensional impulse IR was selected to produce comparable
compaction of the core in each case, and a significantly larger value of IR was used in the ‘‘sandwich
plate’’ case.

As shown in Fig. 3, the computational simulations are quite sensitive to the value of the material vis-
cosity coefficient l specified in the material model. For the ‘‘pendulum’’ case with n = 20 elements, Fig. 3
shows that the computational simulations converge very closely to the predictions of the analytical model
when l is reduced to 0.001 Pa s, while larger values of l result in reduced core deformation and increased
values of the nondimensional back-face acceleration ~a2, defined in Eq. (31). The material viscosity coeffi-
cient l was not mentioned by Hanssen et al. (2002), but that study did find that more than 400 elements
were required to achieve adequate convergence. As shown in Fig. 4, for a given value of l the computa-
tional simulations do converge toward the predictions of the analytical model as the number of elements is
increased. However, with l = 0.05 Pa s (the default value for material model 26), the computational results
have not yet converged even with n = 150 elements, which is consistent with the observations of Hanssen
et al. (2002). By reducing l to 0.001 Pa s, adequate convergence can be achieved with fewer elements, as
shown in Fig. 3. The computational results in Figs. 5 and 6 were obtained using l = 0.001 Pa s and
n = 150 elements, which was found to be more than sufficient to achieve convergence for both the ‘‘blast
pendulum’’ and the ‘‘sandwich plate’’ cases of Table 1.
Table 1
Parameters of computational simulations

Case g0 g1 g2 P0 I0

Blast pendulum 0.0125 0.0125 0.975 10 0.015
Sandwich plate 0.5 0.25 0.25 10 1
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In Figs. 5 and 6, computational results are compared with predictions of the analytical model for the ‘‘blast
pendulum’’ and ‘‘sandwich plate’’ cases, respectively, and in both cases, good agreement is observed between
the analytical and computational results. Figs. 5a and 6a show the nondimensional front-face and back-face
velocities defined in Eqs. (28a,b), and Figs. 5b and 6b show the nondimensional work and energy quantities
defined in Eqs. (32a,b,c) and (36). All quantities are plotted against nondimensional time s, defined in Eq. (23),
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and all plots terminate at the instant the shock front is arrested. Beyond this instant, the entire system trans-
lates as a rigid body. At the instant the shock wave is arrested, the velocities of the front and back faces have
converged, so that ~v1 ¼ ~v2 ¼ 1 for both the ‘‘blast pendulum’’ and the ‘‘sandwich plate’’ cases, and the non-
dimensional kinetic energy in both cases has plateaued at eEk ¼ 1. While the final value of the nondimensional
front-face velocity ~v1 is the same for both the ‘‘blast pendulum’’ and the ‘‘sandwich plate’’ cases, comparison
of Figs. 5a and 6a shows that the peak value of ~v1 is much larger in the ‘‘blast pendulum’’ case. The larger
values of ~v1 in the ‘‘blast pendulum’’ case are associated with much larger values of the nondimensional work
done by the pressure pulse eW p than in the ‘‘sandwich plate’’ case, as seen by comparison of Figs. 5b and 6b.
Figs. 5b and 6b also show that the nondimensional energy dissipation eEd is significantly larger than the quasi-
static contribution eEq-s

d from Eq. (36), demonstrating that the rate-dependent dissipation associated with the
shock front has a significant influence on the solution.

4. Initiation and arrest of densification

In order to initiate densification of the core, the peak reflected pressure pR must be sufficiently high that
the stress behind the front face reaches the plateau stress rP. The maximum pressure than can be sustained
without densification, denoted pinit

R , can be evaluated by considering a free-body diagram of the front face
under the applied pressure pinit

R with the plateau stress rP acting at the interface with the core. If densification
has not initiated, then the acceleration of the front face must equal the acceleration of the center of mass,
which is given by €uG ¼ pinit

R =m according to Eq. (1). Newton’s second law for the front face can then be writ-
ten as follows:
pinit
R � rP ¼ m1€uG ¼ m1ðpinit

R =mÞ ð40Þ
Eq. (40) can be rearranged and expressed in terms of nondimensional variables, yielding the following expres-
sion for the nondimensional peak pressure required to initiate densification:
P init
R ¼ ð1� g1Þ

�1 ð41Þ
If P R > P init
R , then densification will occur, and the propagation and arrest of the shock front can be evaluated

by solving the nondimensional equation of motion (25). The nondimensional time at which densification is
arrested, denoted sA, can be evaluated as the instant that the nondimensional shock-front velocity t reaches
zero. The value of the nondimensional coordinate n at this instant, denoted nA, gives the mass fraction of
uncrushed core material remaining at arrest of densification.

Figs. 7a and b show contours of nA versus PR and IR for the ‘‘blast pendulum’’ and ‘‘sandwich panel’’ cases,
respectively (see Table 1), with a triangular pressure pulse. In both cases, the contours for nA = 1 are horizon-
tal lines corresponding to P init

R (41), and no densification occurs for P R 6 P init
R . The contours for nA = 0 in Figs.

7a and b correspond to complete densification of the core. For values of PR and IR beyond these contours, the
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shock front is not arrested before reaching the back face (i.e., n reaches zero before t reaches zero), and the
protective function of the cellular core is lost, as discussed previously. The minimum nondimensional impulse
that produces complete densification of the core is denoted Icrit

R , and the nA = 0 contours in Figs. 7a and b
show that Icrit

R increases as the nondimensional peak pressure PR decreases.
There is a minimum value of PR for which complete densification can be achieved, which is denoted P lim

R .
When P R < P lim

R , complete densification cannot be achieved, even if the pressure is maintained indefinitely (i.e.,
a step function, for which IR!1). Values of P lim

R can be evaluated numerically by selecting a very large value
for IR (a value of IR = 106 was found to be sufficiently large) and solving Eq. (25) repeatedly with varying PR

to find the minimum value of PR for which complete densification is achieved. In the ‘‘blast pendulum’’ case,
P lim

R ffi 1:019 while P init
R ffi 1:013, and the contours for nA = 0 and nA = 1 in Fig. 7a are almost indistinguishable

as IR becomes large. However, in the ‘‘sandwich plate’’ case, P lim
R ffi 2:394 while P init

R ffi 1:333, and a clear gap is
evident between the contours for nA = 0 and nA = 1 as IR becomes large.

Plotted in grey in Figs. 7a and b are contours corresponding to sA = sR, where sA is the nondimensional
time at which the shock front is arrested and sR is the nondimensional duration of the triangular reflected pres-
sure pulse. For values of PR and IR below the sA = sR contour, the shock front is arrested before the end of the
pressure pulse (sA < sR), and the response is more sensitive to the peak pressure than to the total impulse. For
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values of PR and IR above the sA = sR contours, the shock front is arrested after the end of the pressure pulse
(sA > sR), and the response is more sensitive to the total impulse than to the peak pressure.

The dependence of P init
R and P lim

R on mass distribution is shown in Figs. 8a and b, respectively, in which con-
tours of P init

R and P lim
R are plotted against the fraction of mass in the core g0, and against the fraction of remain-

ing mass (i.e., face-sheet mass) in the front face, g1/(g1 + g2). The remaining figures in this paper use the same
axes as Fig. 8 to illustrate the influence of mass distribution on various quantities of interest. To aid in inter-
preting these figures, it is noted that the ‘‘sandwich plate’’ case corresponds to the center of these plots, with
half of the mass in the core, g0 = 0.5, and the remaining mass distributed equally between the front and back
faces, g1/(g1 + g2) = 0.5, while the ‘‘blast pendulum’’ case is near the lower left corner of these plots, with
g0 = 0.0125 and g1/(g1 + g2) = 0.0127. Fig. 8 shows that both P init

R and P lim
R increase with increasing g1/

(g1 + g2), while P init
R decreases with increasing g0. The range between P init

R and P lim
R , over which an infinite

impulse produces only partial densification, is thus maximized in the upper right-hand corner of the plots,
which corresponds to a large mass fraction in the core with most of the remaining mass in the front face.

The influence of mass distribution on I crit
R , the nondimensional reflected impulse required for complete den-

sification of the core, is shown in Figs. 9a and b, in which contours of Icrit
R for PR = 10 and PR = 100, respec-

tively, are plotted using the same axes as in Fig. 8. For consistency with subsequent calculations that include
FSI effects, the values of Icrit

R in Fig. 9 were computed for an exponential pressure pulse as defined in Eq. (39).
It was previously observed in Fig. 7 that Icrit

R increases with decreasing PR, and consequently, larger values of
Icrit

R are observed for PR = 10 (Fig. 9a) than for PR = 100 (Fig. 9b). While the contours in Figs. 9a and b are
fairly close over much of the plot, significant differences are observed near the right-hand edges of the plots,
which correspond to a large fraction of the face-sheet mass in the front face. In Fig. 9a, a contour is plotted for
Icrit

R !1, which is the same as the contour for P lim
R ¼ 10 plotted in Fig. 8b. Along this contour, the nondimen-

sional pressure PR = 10 must be sustained indefinitely in order to achieve complete densification of the core.
The shaded region beyond this contour corresponds to P lim

R > 10, and in this region, complete densification of
the core cannot be achieved with PR = 10, even for an infinite impulse. Fig. 9 shows that for both PR = 10 and
PR = 100, Icrit

R increases with increasing g1/(g1 + g2), and Icrit
R generally increases with increasing g0, except in

the lower right-hand corner of Fig. 9a, as the contour for I crit
R !1 is approached.

Figs. 10a and b show the influence of mass distribution on sA, the nondimensional time at which the shock
front is arrested, for an exponential reflected pressure pulse with PR = 10 and PR = 100, respectively. Con-
tours of sA/sR are plotted, where sR = 1/PR is the nondimensional decay period of the exponential pulse.
To enable a consistent comparison, since sA depends on IR, the values in Figs. 10a and b were evaluated using
the minimum value of IR for which complete densification is achieved in each case (i.e., the values of Icrit

R

shown in Figs. 9a and b, respectively). In the shaded region of Fig. 9b, for which complete densification cannot
be achieved, a value of IR = 100 was used. Fig. 10 shows that the values of sA/sR are about 10 times larger for
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PR = 100 than for PR = 10, as a consequence of the smaller value of sR in the former case. For both PR = 10
and PR = 100, sA/sR decreases with increasing g0 and with increasing g1/(g1 + g2). Fig. 10a shows that in some
cases sA < sR. It was observed previously in Fig. 7 that when sA < sR, the response becomes more sensitive to
the peak pressure than to the total impulse. From Fig. 10a it can then be observed that when g0 and/or g1/
(g1 + g2) become large (i.e., beyond the contour for sA < sR = 1), the system becomes more sensitive to the
peak pressure and less sensitive to the total impulse. In Fig. 10b a contour for sA/sR = 0 is shown, which is
the same as the contour for P init

R ¼ 10 shown previously in Fig. 8a. In the shaded area below this contour,
the nondimensional peak pressure of PR = 10 is insufficient to initiate densification, regardless of the applied
impulse.

Fig. 11 shows contours with varying mass distribution of the ratio eEd=eEq-s
d of the total energy dissipated in

the core to the quasi-static energy dissipation given by Eq. (36). As in Fig. 10, the contours in Fig. 11 corre-
spond to complete densification of the core and were computed using the values of Icrit

R shown in Fig. 9, with
IR = 100 for cases in which complete densification cannot be achieved. Fig. 11 shows that eEd=eEq-s

d increases
with increasing g0 for both PR = 10 and PR = 100, while significantly larger values of eEd=eEq-s

d are observed
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for PR = 100. For large g0, the rate-dependent contribution to the energy dissipation can be many times larger
than the quasi-static contribution. The shaded region in the lower right-hand corner of Fig. 11a corresponds
to the shaded region in Fig. 10a, in which the nondimensional peak pressure of PR = 10 is insufficient to ini-
tiate densification of the core, regardless of the applied impulse. No energy is dissipated in this region, so the
ratio eEd=eEq-s

d is undefined.
While Figs. 9–11 compared results for two different levels of peak pressure (PR = 10 and PR = 100),

Fig. 12 presents results for the limiting case of a Dirac delta pulse, for which PR!1 and sR! 0. In this
limiting case, the values of nondimensional peak pressure required to initiate and complete densification
become irrelevant (P init

R and P lim
R shown in Fig. 8 are always exceeded), and complete densification can always

be achieved for a finite value of the nondimensional reflected impulse IR. Fig. 12a presents contours with
varying mass distribution of the critical nondimensional impulse Icrit

R required for complete densification.
Note that the contours of I crit

R for the Dirac delta pulse in Fig. 12a are virtually indistinguishable from those
for PR = 100 plotted previously in Fig. 9b. Although not plotted herein, it is noted that values of the non-
dimensional time sA required to arrest densification for the Dirac delta pulse are also nearly equivalent to
those for PR = 100. (The ratio sA/sR, plotted for PR = 10 and PR = 100 in Fig. 10, is undefined for the Dirac
delta pulse because sR! 0.) The energy dissipation in the core, however, can be significantly larger for the
Dirac delta pulse than for PR = 100, as can be observed by comparing the contours of eEd=eEq-s

d for the Dirac
delta pulse in Fig. 12b with those shown previously for PR = 100 in Fig. 11b. When the mass fraction in the
core g0 approaches unity, the rate-dependent contribution to the energy dissipation can be significantly lar-
ger for the Dirac delta pulse than for PR = 100. These observations are consistent with those of Vaziri and
Hutchinson (2006) in computational simulations of blast loading on metal sandwich plates, who noted sig-
nificantly larger energy dissipation when the blast impulse was imparted as an initial velocity to the front
face than when it was applied as an exponential pressure pulse, even though the back-face deflections in
the two cases were fairly close.
5. Fluid–structure interaction

The analytical model in Section 2 was formulated in terms of the reflected pressure pr(t), which is influenced
by FSI effects. In this section, the approximation developed by Kambouchev et al. (2006) is used to define the
reflected pressure pr(t) corresponding to a specified incident pressure pulse pi(t), accounting for nonlinear com-
pressibility and FSI effects. For consistency with Kambouchev et al. (2006), an exponential incident pressure
pulse is considered, of the form piðtÞ ¼ p0 e�t=t0 , where t0 is the decay period. Kambouchev et al. (2006)
observed that the reflected pressure pr(t) can also be captured quite well by an exponential pulse, which is con-
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veniently expressed as prðtÞ ¼ pR e�t=tR , where tR is the decay period of the reflected pulse. The peak reflected
pressure pR is related to the peak incident pressure through the pressure reflection coefficient CR:
CR �
pR

p0

¼ 2
7þ 4ðp0=pAÞ
7þ ðp0=pAÞ

ð42Þ
in which pA is the ambient air pressure.
The key result of Kambouchev et al. (2006) is an approximation relating the reflected impulse iR to the inci-

dent impulse i0, which can be expressed as an impulse reflection coefficient aR:
aR �
iR

i0

’ cR

CRfR

cR

� �bs=ð1þbsÞ

bbs=ð1�bsÞ
s ð43Þ
where cR and fR are defined as follows:
cR ¼ 8� 42
pA

p0

ln 1þ p0

7pA

� �
ð44Þ

fR ¼ 6
p0

pA

þ 7

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6þ CRÞðp0=pAÞ þ 7

ðp0=pA þ 7Þ½ð1þ 6CRÞðp0=pAÞ þ 7�½CRðp0=pAÞ þ 7�

s
ð45Þ
The nondimensional FSI parameter bs in Eq. (43) is conveniently expressed as
bs ¼ bA

7þ 6ðp0=pAÞ
7þ p0=pA

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6p0

7pA

þ 1

s
ð46Þ
where bA is an alternative nondimensional parameter introduced by Vaziri and Hutchinson (2006), expressed
in terms of ambient air properties:
bA ¼
qAcAt0

mFSI

ð47Þ
in which qA is the ambient air density, cA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4pA=qA

p
is the ambient speed of sound in air, and mFSI is the

areal density of the plate considered in the FSI analysis.
Kambouchev et al. (2006) considered a freestanding solid plate in developing Eq. (43), and further approx-

imations must be introduced in selecting an appropriate value of mFSI to extend this result to a sandwich plate
with a crushable core. Vaziri and Hutchinson (2006) considered only the mass of the front face in their analysis
of FSI for sandwich plates, i.e., setting mFSI = m1 in Eq. (47). However, they noted that this neglects the resis-
tance due to crushing of the core and thus overestimates the beneficial effects of FSI. In this paper, an alter-
native approximation is proposed that incorporates the resistance of the core by defining mFSI as the areal
density of a solid plate with the same initial acceleration of the front face of the sandwich plate.

Provided that the peak reflected pressure pR is sufficiently high to initiate densification, the initial acceler-
ation of the front face of the sandwich plate is given by €uinit

1 ¼ ðpR � rPÞ=m1. Requiring a corresponding solid
plate to have the same initial acceleration under the applied pressure pR, mFSI can then be defined as
mFSI ¼ pR=€uinit

1 ¼ m1=ð1� rP=pRÞ. If pR is insufficient to initiate densification, then the sandwich plate
responds as a monolithic solid plate and mFSI = m. These results can be expressed in terms of nondimensional
variables as
gFSI �
mFSI

m
¼ g1ð1� P�1

R Þ
�1
; P R P P init

R

1; P R < P init
R

(
ð48Þ
where gFSI represents the effective mass fraction of the sandwich panel that participates in FSI, and P init
R is de-

fined in Eq. (41). Eq. (48) shows that gFSI! g1 as the nondimensional peak pressure PR becomes large, which
corresponds to the approximation used by Vaziri and Hutchinson (2006).

To check the appropriateness of using Eq. (48) to extend FSI results for solid plates to sandwich plates, the
acceleration of the solid plate considered in the FSI analysis, denoted €uFSI ¼ prðtÞ=mFSI, can be compared with
the acceleration of the front face of the sandwich panel, given by €u1 ¼ ½prðtÞ � rP�=½m1 þ q0ð‘0 � xÞ�. With the
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exponential reflected pressure pulse prðtÞ ¼ pR e�t=tR and with mFSI defined by Eq. (48), the ratio €uFSI=€u1 can be
expressed in terms of nondimensional variables as a product of two factors:
Fig. 13
in trea
arrest
€uFSI

€u1

¼ g1 þ g0ð1� nÞ
g1

� 1� P�1
R

1� P�1
R es=sR

ð49Þ
By definition, €uFSI=€u1 ¼ 1 initially, but both factors in Eq. (49) increase as time progresses and n decreases
from unity. The first factor in Eq. (49) is associated with the accretion of crushed core material as the densi-
fication front propagates. The resulting increase in inertia may significantly reduce the front-face accelerations
if the mass of the front face is small relative to the mass of the core. The second factor in Eq. (49) is associated
with the resistance provided by the plateau stress of the core material, which remains constant as the reflected
pressure decays. The ratio €uFSI=€u1 is undefined for s /sR = lnPR, because the plateau stress equals the reflected
pressure at this instant, and therefore €u1 ¼ 0. For s /sR > lnPR, the plateau stress exceeds the reflected pres-
sure, and the front face decelerates ð€u1 < 0Þ, provided that the densification front has not already been ar-
rested. Both of these effects (the accretion of crushed core material and the resistance provided by the
plateau stress) lead to reduced accelerations of the front face relative to the accelerations of the solid plate
considered in the FSI analysis. If such reductions are significant during the period of application of the pres-
sure pulse, then Eq. (48) will overestimate the motion of the front face and thus overestimate the beneficial
effects of FSI. Conversely, if the ratio €uFSI=€u1 remains fairly close to unity during the application of the pres-
sure pulse, then Eq. (48) should be reasonably accurate.

Figs. 13a and b show contours with varying mass distribution of the ratio €uFSIðt�Þ=€u1ðt�Þfor PR = 10 and
PR = 100, respectively. The time t* is the lesser of the decay period tR and the arrest time tA, so that the ratio
€uFSI=€u1 is evaluated at t = tR unless the densification front is arrested first (see the contours of tA/tR in Fig. 10).
Note that at t = tR, the reflected pressure has decayed to 36.8% of its initial value, and 63.2 % of the total
impulse has been imparted. As in Figs. 10 and 11, the contours in Fig. 13 correspond to complete densification
of the core and were computed using the values of I crit

R shown in Fig. 9, with IR = 100 for cases in which com-
plete densification cannot be achieved. When the mass fraction in the core g0 is small, the ratio €uFSI=€u1is fairly
close to unity for both PR = 10 and PR = 100. However, large values of €uFSI=€u1 are observed as g0 approaches
unity, particularly when the mass fraction in the front face is small. Much larger values of €uFSI=€u1 are observed
for PR = 10 than for PR = 100, indicating that it is less appropriate in the former case to approximate FSI
effects using Eq. (48). This is due largely to the longer decay period associated with the lower level of peak
pressure, which allows more time for the accretion of crushed core material during the application of the pres-
sure pulse. For this reason, in the subsequent analysis of FSI effects, numerical results are presented only for
the higher level of peak pressure, PR = 100. In addition, the contour for €uFSIðt�Þ=€u1ðt�Þ ¼ 1:5 in Fig. 13b is
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tentatively identified as an approximate limit of applicability of Eq. (48), and in subsequent plots in which FSI
effects are considered, the region above this contour is hatched to indicate that the approximation in Eq. (48) is
not appropriate. Note that this region corresponds to small values of g1 and/or large values of g0, so that the
mass of the core is large relative to the mass of the front face.

Implementing the FSI approximations in this section within the analytical model of Section 2 first requires
specification of a nondimensional incident pressure P0 and a nondimensional incident impulse I0, defined con-
sistently with the corresponding reflected quantities in Eqs. (37) and (26):
Fig. 14
core an
rigid w
pA = 1
P 0 ¼
p0

rP

; I0 ¼
i0

m

ffiffiffiffiffiffiffiffiffiffi
q0

rPeD

r
ð50a; bÞ
The FSI approximations depend on p0/pA, which can be expressed in terms of P0 as p0/pA = (rP/pA)P0. In the
numerical results presented subsequently, a value of rP/pA = 10 is considered, which corresponds to a plateau
stress of about rP = 1 MPa, as considered previously in the computational simulations. With p0/pA thus spec-
ified, the pressure reflection coefficient CR (42) can be evaluated, and the nondimensional peak reflected pres-
sure can be computed as PR = CRP0.

It follows from Eqs. (50a,b) that I0=P 0 ¼ ðt0=mÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0rP=eD

p
, whereby bA (47) can be expressed in terms of P0

and I0 as
bA ¼
qAcAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0rP=eD

p 1

gFSI

I0

P 0

ð51Þ
where gFSI can be evaluated from Eq. (48), and a value of the nondimensional constant qAcA=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0rP=eD

p
must

be specified from the relevant physical properties. In the numerical results presented subsequently, a value of
qAcA=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0rP=eD

p
¼ 0:02206 is considered, which corresponds to setting qA = 1.225 kg/m3 and cA = 340.3 m/s

for air and using the values of q0 = 250 kg/m3, rP = 1 MPa, and e0 = 0.7 considered previously in the compu-
tational simulations. The nondimensional FSI parameter bs (46) and the impulse reflection coefficient aR (43)
can then be evaluated in terms of p0/pA and bA, whereby the nondimensional reflected impulse can be obtained
as IR = aRI0. With PR and IR thus determined, the response of the sandwich plate can be evaluated by solving
the nondimensional equation of motion (25) with the exponential nondimensional reflected pressure pulse in
Eq. (39).

Fig. 14a shows contours with varying mass distribution of Icrit
0 , the nondimensional incident impulse

required to produce complete compaction of the core for PR = 100. The values of Icrit
0 in Fig. 14a are related

to the values of Icrit
R in Fig. 9b through the impulse reflection coefficient aR (43): Icrit

R ¼ aRIcrit
0 . Fig. 14b shows
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corresponding contours of the ratio aR/cR between the impulse reflected from the sandwich plate and the
impulse reflected from a fixed, rigid wall for PR = 100. The beneficial effects of FSI are evident in Fig. 14b,
with values of aR/cR less than unity indicating impulse reductions due to FSI. Fig. 14b shows a trend of
decreasing aR/cR with increasing g0, with impulse reductions of more than 30 % observed within the domain
of applicability of the FSI approximation (48). It is noted that these decreases in aR/cR are associated with
underlying increases in the nondimensional FSI parameter bA (43). Reductions of aR/cR with increasing bA

follow from Eq. (43) and are illustrated in Fig. 1 of Vaziri and Hutchinson (2006). (The ratio aR/cR is equiv-
alent to I=ImP!1 in their notation.)

The increases in bA that underlie Fig. 14b result from two effects. Firstly, the contours in Fig. 14b corre-
spond to complete densification of the core, with the critical values of incident impulse Icrit

0 shown in Fig. 14a.
Increases in Icrit

0 then produce increases in bA, because bA is proportional to I0 as shown by Eq. (51). Secondly,
decreases in g1 produce increases in bA, because bA is inversely proportional to g1, according to Eqs. (51) and
(48). This latter effect leads to reductions in aR/cR as the fraction of face-sheet mass in the front face g1/
(g1 + g2) decreases, due to the relatively smaller mass participating in FSI. It is a consequence of this latter
effect that the contours of Icrit

0 in Fig. 14a curve downwards as they approach the hatched region along the
left-hand edge of the plot, in contrast with the corresponding contours of I crit

R in Fig. 9b. Further increases
in Icrit

0 may occur in hatched region where g1/(g1 + g2) becomes small. However, in the domain of applicability
of the FSI approximation (48), Icrit

0 increases with increasing g1/(g1 + g2), and the contours for I crit
0 follow the

same general trend as those for Icrit
R in Fig. 9b.

It is interesting to compare the work done by the pressure pulse with the work done on a corresponding
solid plate with the same total mass. For a prescribed reflected pressure pulse pr(t), Eq. (12) shows that crush-
ing of the cellular core enhances the work done relative to that done on a solid plate due to the increased veloc-
ity of the front face. Due to the beneficial effects of FSI, however, pr(t) is not simply prescribed, but the
reflected impulse for a sandwich plate can be reduced by the increase motion of the front face. Combining
Eqs. (32a) and (43), the total work done by the pressure pulse on the sandwich plate as a consequence of these
competing effects can be expressed as W tot

p ¼ eW tot
p ½12 ðaRi0Þ2=m�, where eW tot

p is evaluated by integrating Eq. (34),
and the superscript ‘‘tot’’ denotes limiting values as t!1. The work done on a solid plate with the same total
mass can be expressed as W tot

p;solid ¼ 1
2
ðasolid

R i0Þ2=m, where asolid
R is evaluated from Eq. (43) with mFSI = m (or

gFSI = 1). The ratio of the work done on the sandwich plate to the work done on the corresponding solid plate
can then be expressed as
Fig. 15
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Fig. 15 shows contours with varying mass distribution of the ratio W tot
p =W tot

p;solid for PR = 100. As in Fig. 14b,
the contours in Fig. 15 correspond to complete densification of the core, with the critical values of incident
impulse Icrit

0 shown in Figs. 14a. All of the values in Fig. 15 are greater than unity, indicating that impulse
reductions due to the beneficial effects of FSI are insufficient to offset the enhanced work that results from
increased velocities of the front face. Fig. 15 shows that W tot

p =W tot
p;solid is largest in the lower left corner of

the plot, corresponding to a small mass fraction in the core with most of the mass in the back face. Interest-
ingly, this mass distribution corresponds to the blast pendulum experiments discussed previously, for which
simulation results were shown in Fig. 5. Fig. 15 shows that for such mass distributions, the work done by
the pressure pulse can be more than ten times larger than the work done on a corresponding solid plate.
Increasing the fraction of face-sheet mass in the front face g1/(g1 + g2) leads to decreases in W tot

p =W tot
p;solid.

6. Mitigation of back-face accelerations

The nondimensional back-face acceleration ~a2, defined in Eq. (31), is an indication of the degree of protec-
tion provided by the limiting plateau stress rP of the cellular core. According to Eq. (31), the peak back-face
acceleration occurs when n = 0 (i.e., at the instant the shock front reaches the back face) and is given by
~acrit

2 ¼ g�1
2 , while the minimum back-face acceleration occurs when n = 1 (i.e., at the instant that densification

initiates) and is given by ~ainit
2 ¼ ðg0 þ g2Þ

�1. Figs. 16a and b show contours of ~ainit
2 and ~acrit

2 , respectively, with
varying mass distribution. The two quantities are equivalent in the limit as g0! 0, but as g0 increases, ~ainit

2

decreases while ~acrit
2 increases. For a given mass fraction in the core g0, increasing the mass fraction in the front

face leads to increases in both ~ainit
2 and ~acrit

2 , thus producing larger back-face accelerations.
While the nondimensional back-face acceleration ~a2 (31) is defined in terms of the plateau stress rP, an

alternative nondimensional back-face acceleration can be defined as €u2=€upeak
G , where €upeak

G ¼ pR=m is the peak
acceleration of the center of mass. (This alternative nondimensionalization cannot be used for the Dirac delta
pulse, for which pR!1 and thus €upeak

G is undefined.) It follows from Eq. (31) that €u2=€upeak
G ¼ ~a2=P R, so that

values of €u2=€upeak
G can be obtained from corresponding values of ~a2 simply through division by the nondimen-

sional peak reflected pressure PR. Using this nondimensionalization, the peak back-face acceleration (at com-
plete densification) can be expressed as €ucrit

2 =€upeak
G ¼ ~acrit

2 =P R ¼ ðg2P RÞ�1. Interestingly, when g2 < 1/PR (or
equivalently, when ~acrit

2 > P R), the peak back-face acceleration is actually larger than the corresponding peak
rigid-body acceleration, thus sacrificing the protective role of the cellular core in limiting the back-face face
accelerations. With PR = 10, for example, the contour for ~acrit

2 ¼ 50 in Fig. 12b corresponds to
€ucrit

2 =€upeak
G ¼ 5, meaning that the peak back-face acceleration is five times larger than the corresponding

rigid-body acceleration.
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

1.01

1.1

1.4

2

5
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

50

10

5

3

2

1.4

Fr
ac

tio
n 

of
 m

as
s 

in
 c

or
e,

 η
0

Fraction of face-sheet mass in front face
η1  / (η1 + η2)

Fraction of face-sheet mass in front face
η1  / (η1 + η2)

Fr
ac

ti
on

 o
f m

as
s 

in
 c

or
e,

 η
0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

1.01

1.1

1.4

2

5
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

1.01

1.1

1.4

2

5
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

50

10

5

3

2

1.4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

50

10

5

3

2

1.4

Fr
ac

tio
n 

of
 m

as
s 

in
 c

or
e,

 η
0

Fraction of face-sheet mass in front face
η1  / (η1 + η2)

Fraction of face-sheet mass in front face
η1  / (η1 + η2)

Fr
ac

ti
on

 o
f m

as
s 

in
 c

or
e,

 η
0

Fig. 16. Contours with varying mass distribution of nondimensional back-face acceleration, ~a2. (a) At initiation of densification, ~ainit
2 and

(b) at complete densification of core, ~acrit
2 .
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The plots shown previously in Figs. 8b, 9, 14a, and 15 indicate that for a given mass fraction in the core g0,
increasing the mass fraction in the front face increases the resilience of the system by increasing the nondimen-
sional peak pressure P lim

R and the nondimensional reflected and incident impulses, I crit
R and Icrit

0 , required for
complete densification of the core, and also by reducing the nondimensional work W tot

P =W tot
P;solid done by the

pressure pulse relative to that done on a corresponding solid plate with the same total mass. However,
Fig. 16 indicates that increasing the mass fraction in the front face also leads to increased back-face acceler-
ations, thus sacrificing a protective function of the cellular core. A design optimization problem can then be
posed by seeking to determine the distribution of mass that maximizes either the nondimensional reflected
impulse IR or the nondimensional incident impulse I0 that can be sustained, while limiting the back-face accel-
erations to a specified maximum value, denoted ~amax

2 .
Figs. 17a and b show contour plots with varying mass distribution of, respectively, the maximum nondi-

mensional reflected impulse IR and the maximum nondimensional incident impulse I0 that can be sustained
with a maximum allowable back-face acceleration of ~amax

2 ¼ 5. The values of I0 in Fig. 17b are related to
the values of IR in Fig. 17a through the impulse reflection coefficient aR (43), while values of I0 are not pre-
sented in the hatched region of Fig. 17b because the FSI approximation (48) is not appropriate. The plots in
Figs. 17a and b can each be divided into three regions in which different conditions prevail. The grey curve in
each figure corresponds to the contour for ~acrit

2 ¼ 5, plotted previously in Fig. 16b. In the region below the grey
curve ~acrit

2 < 5, so complete densification of the core can be permitted without exceeding ~amax
2 . Therefore, in this

region the values of maximum permissible impulse correspond to complete densification of the core, and the
contours in Fig. 17a are the same as those for Icrit

R in Fig. 9b, while the contours in Fig. 17b are the same as
those for Icrit

0 in Fig. 14a. In the region above the grey curve ~acrit
2 > 5, so ~amax

2 will be exceeded if complete den-
sification is allowed. Therefore, the maximum permissible impulses in this region correspond to partial den-
sification of the core and the values in Figs. 17a and b are less than I crit

R and Icrit
0 , respectively. The shaded

region in the lower right-hand corner of Figs. 17a and b is bounded above by the contour for ~ainit
2 ¼ 5, plotted

previously in Fig. 16a. In this region ~ainit
2 > 5, so ~amax

2 will be exceeded if densification is even allowed to ini-
tiate, and thus a nonzero impulse cannot be permitted.

Figs. 17a and b show that the allowable reflected impulse IR and the allowable incident impulse I0 both
increase monotonically with increasing mass fraction in the core g0. It can also be observed in Figs. 17a
and b that for a given g0, the allowable values of IR and I0 are maximized along the contour for ~acrit

2 ¼ 5,
shown in grey. This is evident from the fact that the contours of IR and I0 attain their minimum values of
g0 along the grey curve, with attendant changes in sign of their slope. Similar results have been observed
for other values of the maximum allowable acceleration ~amax

2 , and the optimal contour can be expressed more
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generally as ~acrit
2 ¼ ~amax

2 . This means that for a given g0, the allowable impulse is maximized by adjusting the
mass distribution so that the nondimensional acceleration at complete densification, ~acrit

2 , equals the limiting
value, ~amax

2 . Noting that ~acrit
2 ¼ 1=g2, this optimal mass distribution can be expressed as g2 ¼ 1=~amax

2 , which sim-
ply corresponds to a constant mass fraction in the back face. For a given g0, this criterion specifies a mass
fraction in the front face of g1 ¼ 1� g0 � 1=~alim

2 , which decreases with increasing g0 and reduces to zero when
g0 ¼ 1� 1=~amax

2 . This can be seen in Figs. 13a, in which the contour for ~acrit
2 ¼ 5 intersects the vertical axis at

g0 = 1 � 1/5 = 0.8. For g0 > 1� 1=~amax
2 , the contours of Fig. 13a indicate that the allowable impulse is max-

imized by placing all of the face-sheet mass in the back face (i.e., setting g1 = 0 and g2 = 1 � g0). However, it is
noted that as g0 becomes large, the maximum permissible impulse becomes quite insensitive to the relative dis-
tribution of mass between the front and back faces. For g0 = 0.9, for example, the maximum allowable
impulse for g1 /(g1 + g2)=0.001 is only 0.3% larger than the maximum allowable impulse for g1/
(g1 + g2) = 0.999.

7. Summary and conclusions

This paper has investigated the uniaxial crushing of a cellular layer sandwiched between solid front and
back faces, with air-blast loading applied to the front face and the back-face unrestrained. While previous
studies have sought to minimize deflections for sandwich plates with face sheets of equal mass, the objective
of the present study was to mitigate shock transmission through the thickness of the sandwich plate, and
potential advantages of unequal face sheets were explored by evaluating response characteristics for all pos-
sible distributions of mass between the front and back faces and the cellular core. To investigate the crushing
response of the system, an analytical model was developed using the well-established rigid, perfectly-plastic,
locking (R-P-P-L) idealization for the cellular core. This analytical model represents the propagation of a pla-
nar densification front through the core and accounts for the rate-dependent energy dissipation associated
with the densification front, which can be many times larger than the quasi-static energy dissipation. Predic-
tions of the analytical model showed excellent agreement with computational simulations using the explicit
finite element code LS-DYNA, while a fairly small value of the material viscosity coefficient was required
in the computations to avoid additional viscous dissipation due to spreading of the densification front.

Fluid–structure interaction (FSI) effects were treated using a recent result due to Kambouchev et al. (2006)
for air-blast loading on solid plates. This result was extended to sandwich plates by defining an ‘‘equivalent’’
solid plate based on the initial acceleration of the front face. This FSI approximation neglects increases in the
effective inertia of the front face resulting from accretion of crushed core material as the densification front
propagates, and it was found to be inappropriate when the mass fraction in the core g0 is large relative to
the mass in the front face g1, particularly when the decay period of the pressure pulse is comparable to the
propagation time of the densification front. Within its domain of applicability, this approximation relates
the nondimensional reflected impulse IR and the nondimensional peak reflected pressure PR, which are applied
to the front face of the sandwich plate, to the corresponding values I0 and P0 associated with the incident air
shock.

The capacity of the sandwich plate to mitigate shock transmission is limited by the critical impulse required
to produce complete densification of the core, with corresponding nondimensional reflected and incident val-
ues denoted Icrit

R and Icrit
0 . For IR < Icrit

R , the cellular core serves a protective function by limiting the stress that
reaches the back face to the plateau stress rP. For IR > I crit

R , however, reflection of the densification front from
the back-face results in large stresses that can exceed the peak reflected blast pressure by several times. It was
observed that Icrit

R decreases with increasing nondimensional peak pressure PR, being smallest in the limiting
case of a Dirac delta pulse (PR!1), which corresponds to an initial velocity imparted to the front face. A
limiting nondimensional peak pressure P lim

R was identified, below which only partial densification can be
achieved even if the pressure is maintained indefinitely ðIcrit

R !1Þ, and it was observed that densification
of the core cannot initiate if PR < (1 � g1)�1, regardless of the reflected impulse. Values of Icrit

R for
PR = 100 were virtually indistinguishable from those for the Dirac delta; however, for large g0, the rate-depen-
dent energy dissipation associated with densification front was many times larger for the Dirac delta pulse.

The influence of mass distribution on the critical impulse was investigated, and it was found that both Icrit
R

and Icrit
0 increase with increasing mass fraction in the core g0. For a given g0, both Icrit

R and Icrit
0 were found to
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increase with increasing mass fraction in the front face g1, with corresponding decreases in the ratio
W tot

p =W tot
p;solid of the work done by the pressure pulse on the sandwich plate to the work done on a correspond-

ing solid plate with the same total mass. Impulse reflection coefficients associated with the critical impulses
were observed to be reduced by as much as 30% relative to impulse reflection coefficients for a rigid wall,
due to the beneficial effects of FSI. In spite of this, the ratio W tot

p =W tot
p;solid was always greater than unity, indi-

cating that impulse reductions due to FSI are insufficient to offset the enhanced work that results from
increased velocities of the front face. The ratio W tot

p =W tot
p;solid is maximized for small values of g0 and g1, with

most of the mass in the back-face (g2! 1), for which values of W tot
p =W tot

p;solid in excess of 10 are observed, and
both Icrit

R and I crit
0 are also minimized in this region. Interestingly, such mass distributions correspond precisely

to the ‘‘blast pendulum’’ experiments of Hanssen et al. (2002), in which impulse enhancement was observed. It
is therefore observed that such configurations are particularly well suited for absorbing energy from air blasts
and particularly poorly suited for dissipating energy through core crushing, which helps to explain their poor
performance for blast mitigation.

The observed increases in Icrit
R and Icrit

0 with corresponding decreases in W tot
p =W tot

p;solid suggest that the capac-
ity of the sandwich plate to mitigate shock transmission might be improved by increasing the mass fraction in
the front face g1 and reducing the mass fraction in the back-face g2. However, it was also observed that reduc-
ing g2 leads to increased back-face accelerations, thus decreasing the protection provided by the core material.
In fact, it was found that if g2 < 1/PR, the back-face acceleration can exceed the peak acceleration of the center
of mass, meaning that the cellular core actually amplifies the back-face accelerations, rather than reducing
them. Motivated by these observations, a design optimization problem was posed that involves finding the
mass distribution that maximizes the nondimensional impulse that can be absorbed while limiting the nondi-
mensional back-face accelerations to a specified maximum value, denoted ~amax

2 . In the domain of applicability
of the FSI approximation, it was found that for a given mass fraction in the core g0 (provided
g0 < 1� 1=~amax

2 ), the allowable values of both IR and I0 are maximized by setting the mass fraction in the back
face to g2 ¼ 1=~amax

2 . This corresponds to a mass distribution such that the back-face acceleration at complete
densification equals the maximum allowable value. While corresponding values of I0 could not be evaluated
for large g0 due to the inapplicability of the FSI approximation, allowable values of IR were found to be quite
insensitive to the relative distribution of mass between the front and back faces for g0 > 1� 1=~amax

2 . More
detailed computational modeling of FSI effects for sandwich plates would be required to assess whether fur-
ther increases in the allowable values of I0 could be achieved when the mass fraction in the front face g1 is
small relative to g0.

Acknowledgments

This research was supported in part by an appointment of the first author to the Postgraduate Research
Participation Program at the US Army Research Laboratory administered by the Oak Ridge Institute for Sci-
ence and Education through an interagency agreement between the US Department of Energy and USARL.
Additional support from USARL through contract 7F013BW208 is gratefully acknowledged.

References

Cooper, G.J., Townend, D.J., Cater, S.R., Pearce, B.P., 1991. The role of stress waves in thoracic visceral injury from blast loading –
modification of stress transmission by foams and high-density materials. Journal of Biomechanics 24 (5), 273–285.

Deshpande, V.S., Fleck, N.A., 2005. One-dimensional response of sandwich plates to underwater shock loading. Journal of the Mechanics
and Physics of Solids 53, 2347–2383.

Fleck, N.A., Deshpande, V.S., 2004. The resistance of clamped sandwich beams to shock loading. Journal of Applied Mechanics ASME
71, 386–401.

Friend, T., 2005. Using shock wave simulation to optimize body armor. Scientific Computing and Instrumentation.
Hanssen, A.G., Enstock, L., Langseth, M., 2002. Close-range blast loading of aluminum foam panels. International Journal of Impact

Engineering 27, 593–618.
Harrigan, J.J., Reid, S.R., Peng, C., 1999. Inertia effects in impact energy absorbing materials and structures. International Journal of

Impact Engineering 22, 955–979.
Hutchinson, J.W., Xue, Z., 2005. Metal sandwich plates optimized for pressure impulses. International Journal of Mechanical Sciences 47,

545–569.



J.A. Main, G.A. Gazonas / International Journal of Solids and Structures 45 (2008) 2297–2321 2321
Kambouchev, N., Noels, L., Radovitzky, R., 2006. Nonlinear compressibility effects in fluid–structure interaction and their implications
on the air-blast loading of structures. Journal of Applied Physics 100 (6), 063519.

Li, Q.M., Meng, H., 2002. Attenuation or enhancement – a one-dimensional analysis on shock transmission in the solid phase of a cellular
material. International Journal of Impact Engineering 27, 1049–1065.

Li, Q.M., Reid, S.R., 2006. About one-dimensional shock propagation in a cellular material. International Journal of Impact Engineering
32, 1898–1906.

Lopatnikov, S.L., Gama, B.A., Hauque, M.J., Krauthauser, C., Gillespie, J.W., Guden, M., Hall, I.W., 2003. Dynamics of metal foam
deformation during Taylor cylinder – Hopkinson bar impact experiment. Composite Structures 61, 61–71.

Lopatnikov, S.L., Gama, B.A., Hauque, M.J., Krauthauser, C., Gillespie, J.W., 2004. High-velocity plate impact of metal foams.
International of Impact Engineering 30, 421–445.

Main, J.A., Gazonas, G.A., 2005. Impulsive loading of cellular media in sandwich construction. In: Proceedings, 14th APS Topical
Conference on Shock Compression of Condensed Matter, pp. 1539–1542.

Nesterenko, V.F., 2002. Shock (blast) mitigation by ‘‘soft’’ condensed matter. In: MRS Proceedings, vol. 759.
Qiu, X., Deshpande, V.S., Fleck, N.A., 2004. Dynamic response of a clamped circular plate subject to shock loading. Journal of Applied

Mechanics ASME 71, 637–645.
Radford, D.D., Deshpande, V.S., Fleck, N.A., 2005. The use of metal foam projectiles to simulate shock loading on a structure.

International Journal of Impact Engineering 31, 1152–1171.
Radford, D.D., McShane, G.J., Deshpande, V.S., Fleck, N.A., 2006. The response of clamped sandwich plates with metallic foam cores to

simulated blast loading. International Journal of Solids and Structures 43 (7-8), 2243–2259.
Rathbun, H.J., Radford, D.D., Xue, Z., He, M.Y., Yang, J., Deshpande, V., Fleck, N.A., Hutchinson, J.W., Zok, F.W., Evans, A.G.,

2006. Performance of metallic honeycomb-core sandwich beams under shock loading. International Journal of Solids and Structures
43 (6), 1746–1763.

Reid, S.R., Peng, C., 1997. Dynamic uniaxial crushing of wood. International Journal of Impact Engineering 19, 531–570.
Tan, P.J., Reid, S.R., Harrigan, J.J., Zou, Z., Li, S., 2005a. Dynamic compressive strength properties of aluminium foams. Part I –

experimental data and observations. Journal of the Mechanics and Physics of Solids 53, 2174–2205.
Tan, P.J., Reid, S.R., Harrigan, J.J., Zou, Z., Li, S., 2005b. Dynamic compressive strength properties of aluminium foams. Part II –

‘shock’ theory and comparison with experimental data and numerical models. Journal of the Mechanics and Physics of Solids 53,
2206–2230.

Taylor, G.I., 1963. The pressure and impulse of submarine explosion waves on plates. In: The Scientific Papers of G.I. Taylor, vol. III.
Cambridge University Press, Cambridge, pp. 287–303.

Vaughn, D.G., Canning, J.M., Hutchinson, J.W., 2005. Coupled plastic wave propagation and column buckling. Journal of Applied
Mechanics 72, 139–146.

Vaziri, A., Hutchinson, J.W., 2006. Metal sandwich plates subject to intense air shocks. International Journal of Solids and Structures 44,
2021–2035.

Xue, Z., Hutchinson, J.W., 2003. Preliminary assessment of sandwich plates subject to blast loads. International Journal of Mechanical
Sciences 45, 687–705.

Xue, Z., Hutchinson, J.W., 2004. A comparative study of impulse-resistant metal sandwich plates. International Journal of Impact
Engineering 30, 1283–1305.

Xue, Z., Hutchinson, J.W., 2006. Crush dynamics of square honeycomb sandwich cores. International Journal for Numerical Methods in
Engineering 65, 2221–2245.



 

 

INTENTIONALLY LEFT BLANK. 



 
 
NO. OF  
COPIES ORGANIZATION  
 

 

 1 DEFENSE TECHNICAL 
 (PDF INFORMATION CTR 
 ONLY) DTIC OCA 
  8725 JOHN J KINGMAN RD 
  STE 0944 
  FORT BELVOIR VA 22060-6218 
 
 1 US ARMY RSRCH DEV & 
  ENGRG CMD 
  SYSTEMS OF SYSTEMS 
  INTEGRATION 
  AMSRD SS T 
  6000 6TH ST STE 100 
  FORT BELVOIR VA  22060-5608 
 
 1 DIRECTOR 
  US ARMY RESEARCH LAB 
  IMNE ALC IMS 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 1 DIRECTOR 
  US ARMY RESEARCH LAB 
  AMSRD ARL CI OK TL 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 1 DIRECTOR 
  US ARMY RESEARCH LAB 
  AMSRD ARL CI OK T 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 

ABERDEEN PROVING GROUND 
 
 1 DIR USARL 
  AMSRD ARL CI OK TP (BLDG 4600) 
 
 



 
 
NO. OF  NO. OF  
COPIES ORGANIZATION  COPIES ORGANIZATION 
 
 1 DPTY ASSIST SCT FOR R&T 
  SARD TT 
  ASA (ACT) 
  J PARMENTOLA 
  THE PENTAGON RM 3E479 
  WASHINGTON DC 20310-1714 
 
 1 US MILITARY ACADEMY 
  MATH SCI CTR EXCELLENCE 
  MADN MATH 
  THAYER HALL 
  WEST POINT NY 10996-1786 
 
 1 US ARMY MATERIEL CMND 
  AMCRD 
  9301 CHAPEK RD 
  FORT BELVOIR VA 22060-5527 
 
 3 AIR FORCE ARMAMENT LAB 
  AFATL DLJW 
  W COOK 
  D BELK 
  J FOSTER 
  EGLIN AFB FL 32542 
 
 2 DARPA 
  L CHRISTODOULOU 
  W COBLENZ 
  3701 N FAIRFAX DR 
  ARLINGTON VA 22203-1714 
 
 1 US ARMY TACOM ARDEC 
  AMSTA AR WEE 
  E BAKER 
  PICATINNY ARSENAL NJ 
  07806-5000 
 
 2 US ARMY TARDEC 
  AMSTRA TR R MS 263 
  K BISHNOI 
  D TEMPLETON 
  WARREN MI 48397-5000 
 
 3 COMMANDER 
  US ARMY RESEARCH OFFICE 
  B LAMATTINA 
  J LAVERY 
  D STEPP 
  PO BOX 12211 
  RESEARCH TRIANGLE PARK NC 
  27709-2211 
 

 5 DIRECTOR 
  LANL 
  P MAUDLIN 
  R GRAY 
  W R THISSELL 
  A ZUREK 
  F ADDESSIO  
  PO BOX 1663 
  LOS ALAMOS NM 87545 
 
 1 COMMANDER 
  US ARMY RSRCH OFC 
  A RAJENDRAN 
  PO BOX 12211 
  RSRCH TRIANGLE PARK NC 
  27709-2211 
 
 7 DIRECTOR 
  SANDIA NATL LABS 
  J BISHOP MS 0346 
  E S HERTEL JR MS 0382 
  W REINHART MS 1181 
  T VOGLER MS 1181 
  L CHHABILDAS MS 1811 
  M FURNISH MS 1168 
  M KIPP MS 0378 
  PO BOX 5800 
  ALBUQUERQUE NM 87185-0307 
 
 1 DIRECTOR 
  LLNL 
  M J MURPHY 
  PO BOX 808 
  LIVERMORE CA 94550 
 
 3 CALTECH 
  M ORTIZ MS 105 50 
  G RAVICHANDRAN 
  T J AHRENS MS 252 21 
  1201 E CALIFORNIA BLVD 
  PASADENA CA 91125 
 
 5 SOUTHWEST RSRCH INST 
  C ANDERSON 
  K DANNEMANN 
  T HOLMQUIST 
  G JOHNSON 
  J WALKER 
  PO DRAWER 28510 
  SAN ANTONIO TX 78284 
 



 
 
NO. OF  NO. OF  
COPIES ORGANIZATION  COPIES ORGANIZATION 
 
 1 TEXAS A&M UNIV 
  DEPT OF MATH 
  J WALTON 
  COLLEGE STATION TX 77843 
 
 2 SRI INTERNATIONAL 
  D CURRAN 
  D SHOCKEY 
  333 RAVENSWOOD AVE 
  MENLO PARK CA 94025 
 
 8 UNIV OF NEBRASKA 
  DEPT OF ENGRG MECH 
  D ALLEN 
  F BOBARU 
  Y DZENIS 
  G GOGOS 
  M NEGAHBAN 
  R FENG 
  J TURNER 
  Z ZHANG 
  LINCOLN NE 68588 
 
 1 JOHNS HOPKINS UNIV 
  DEPT OF MECH ENGRG 
  K T RAMESH 
  LATROBE 122 
  BALTIMORE MD 21218 
 
 1 WORCESTER POLYTECHNIC INST 
  MATH SCI 
  K LURIE 
  WORCESTER MA 01609 
 
 3 UNIV OF UTAH 
  DEPT OF MATH 
  A CHERKAEV 
  E CHERKAEV 
  T FOLIAS 
  SALT LAKE CITY UT 84112 
 
 1 PENN STATE UNIV 
  DEPT OF ENGNG SCI & MECH 
  F COSTANZO 
  UNIV PARK PA 168023 
 
 2 UNIV OF DELAWARE 
  DEPT OF MECH ENGRG 
  T BUCHANAN 
  T W CHOU 
  126 SPENCER LAB 
  NEWARK DE 19716 
 

 2 UNIV OF DELAWARE 
  CTR FOR COMPOSITE MTRLS 
  J GILLESPIE 
  M SANTARE 
  126 SPENCER LAB 
  NEWARK DE 19716 
 
 1 COMPUTATIONAL MECHS CONSLNT 
  J A ZUKAS 
  PO BOX 11314 
  BALTIMORE MD 21239-0314 
 
 1 KAMAN SCI CORP 
  D L JONES 
  2560 HUNTINGTON AVE STE 200 
  ALEXANDRIA VA 22303 
 
 1 APPLIED RSCH ASSOC 
  D E GRADY 
  4300 SAN MATEO BLVD NE 
  STE A220 
  ALBUQUERQUE NM 87110 
 
 6 INST OF ADVANCED TECH 
  UNIV OF TX AUSTIN 
  S BLESS 
  H FAIR 
  D LITTLEFIELD 
  C PERSAD 
  P SULLIVAN 
  S SATAPATHY 
  3925 W BRAKER LN 
  AUSTIN TX 78759-5316 
 
 1 INTRNTL RSRCH 
  ASSOC INC 
  D L ORPHAL 
  4450 BLACK AVE 
  PLEASANTON CA 94566 
 
 1 AKT MISSION RSRCH CORP 
  M EL RAHEB 
  23052 ALCALDE DR 
  LAGUNA HILLS CA 92653 
 
 1 WASHINGTON ST UNIV 
  SCHOOL OF MECHL  
  AND MTRL ENGRG 
  J L DING 
  PULLMAN WA 99164-2920 
  



 
 
NO. OF  NO. OF  
COPIES ORGANIZATION  COPIES ORGANIZATION 
 

 

 2 WASHINGTON ST UNIV 
  INST OF SHOCK PHYSICS 
  Y M GUPTA 
  J ASAY 
  PULLMAN WA 99164-2814 
 
 1 ARIZONA STATE UNIV 
  MECHL AND AEROSPACE 
  ENGRG 
  D KRAJCINOVIC 
  TEMPE AZ 85287-6106 
 
 1 NORTHWESTERN UNIV 
  DEPT OF CIVIL & ENVIRON 
  ENGRG 
  Z BAZANT 
  2145 SHERIDAN RD 
  EVANSTON IL 60208-3109 
 
 1 UNIV OF DAYTON RSRCH INST 
  N S BRAR 
  300 COLLEGE PARK 
  MS SPC 1911 
  DAYTON OH 45469 
 
 2 TEXAS A&M UNIV 
  DEPT OF GEOPHYSICS 
  F CHESTER 
  T GANGI 
  COLLEGE STATION TX 77843 
 
 1 UNIV OF SAN DIEGO 
  DEPT OF MATH & CMPTR SCI 
  A VELO 
  5998 ALCALA PARK 
  SAN DIEGO CA 92110 
 
 1 NIST 
  BLDG & FIRE RSRCH LAB 
  J MAIN 
  100 BUREAU DR MS 8611 
  GAITHERSBURG MD 20899-8611 
 
 1 MIT 
  DEPT ARNT ASTRNTC 
  R RADOVITZKY 
  77 MASSACHUSETTS AVE 
  CAMBRIDGE MA 02139 
 
 2 MTRLS SCI CORP 
  A CAIAZZO 
  R LAVERTY 
  181 GIBRALTAR RD 
  HORSHAM PA 19044 

 2 DIR USARL 
  AMSRD ARL D 
  C CHABALOWSKI 
  V WEISS 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 

ABERDEEN PROVING GROUND 
 
 77 DIR USARL 
  AMSRD ARL WM 
   S KARNA 
   J MCCAULEY 
   P PLOSTINS 
   J SMITH 
   T WRIGHT 
  AMSRD ARL WM B 
   J NEWILL 
   M ZOLTOSKI 
  AMSRD ARL WM BA 
   D LYON 
  AMSRD ARL WM BC 
   P WEINACHT 
  AMSRD ARL WM BD 
   P CONROY 
   B FORCH 
   R LIEB 
   R PESCE-RODRIGUEZ 
   B RICE 
  AMSRD ARL WM BF 
   W OBERLE 
  AMSRD ARL VT RP 
   J BORNSTEIN 
  AMSRD ARL WM M 
   R DOWDING 
   S MCKNIGHT 
  AMSRD ARL WM MA 
   R JENSEN 
   A RAWLETT 
   M VANLANDINGHAM 
   E WETZEL 
  AMSRD ARL WM MB 
   M BERMAN 
   L BURTON 
   T BOGETTI 
   M CHOWDHURY 
   W DE ROSSET 
   W DRYSDALE 
   A FRYDMAN 
   D HOPKINS 
   L KECSKES 
   T H LI 
   M MINNICINO



 
 
NO. OF   
COPIES ORGANIZATION   
 

 

   B POWERS 
   J TZENG 
  AMSRD ARL WM MC 
   R BOSSOLI 
   S CORNELISON 
   M MAHER 
   W SPURGEON 
  AMSRD ARL WM MD 
   B CHEESEMAN 
   E CHIN 
   K CHO 
   B DOOLEY 
   C FOUNTZOULAS 
   G GAZONAS 
   J LASALVIA 
   P PATEL 
   J SANDS 
   B SCOTT 
   C F YEN 
  AMSRD ARL WM SG 
   T ROSENBERGER 
  AMSRD ARL WM T 
   P BAKER 
  AMSRD ARL WM TA 
   M BURKINS 
  AMSRD ARL WM TB 
   N ELDREDGE 
   J STARKENBERG 
  AMSRD ARL WM TC 
   R COATES 
   T FARRAND 
   K KIMSEY 
   M FERMEN-COKER 
   D SCHEFFLER 
   S SCHRAML 
   S SEGLETES 
  AMSRD ARL WM TD 
   S BILYK 
   T BJERKE 
   D CASEM 
   J CLAYTON 
   D DANDEKAR 
   M GREENFIELD 
   B LOVE 
   M RAFTENBERG 
   E RAPACKI 
   M SCHEIDLER 
   T WEERASOORIYA 
  AMSRD ARL WM TE 
   J POWELL 
   B RINGERS 
   G THOMSON 
  AMSRD ARL WM UV 
   D WILKERSON
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